An algorithm for deciding if a polyomino tiles the plane by translations

نویسندگان

  • Ian Gambini
  • Laurent Vuillon
چکیده

For polyominoes coded by their boundary word, we describe a quadratic O(n) algorithm in the boundary length n which improves the naive O(n) algorithm. Techniques used emanate from algorithmics, discrete geometry and combinatorics on words.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An algorithm for deciding if a polyomino tiles the plane

For polyominoes coded by their boundary word, we describe a quadratic O(n) algorithm in the boundary length n which improves the naive O(n) algorithm. Techniques used emanate from algorithmics, discrete geometry and combinatorics on words.

متن کامل

An Optimal Algorithm for Tiling the Plane with a Translated Polyomino

We give aO(n)-time algorithm for determining whether translations of a polyomino with n edges can tile the plane. The algorithm is also a O(n)-time algorithm for enumerating all regular tilings, and we prove that at most Θ(n) such tilings exist.

متن کامل

A Quasilinear-Time Algorithm for Tiling the Plane Isohedrally with a Polyomino

A plane tiling consisting of congruent copies of a shape is isohedral provided that for any pair of copies, there exists a symmetry of the tiling mapping one copy to the other. We give a O(n log2 n)-time algorithm for deciding if a polyomino with n edges can tile the plane isohedrally. This improves on the O(n18)-time algorithm of Keating and Vince and generalizes recent work by Brlek, Provença...

متن کامل

Tiling the Plane with a Fixed Number of Polyominoes

Deciding whether a finite set of polyominoes tiles the plane is undecidable by reduction from the Domino problem. In this paper, we prove that the problem remains undecidable if the set of instances is restricted to sets of 5 polyominoes. In the case of tiling by translations only, we prove that the problem is undecidable for sets of 11 polyominoes.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008